Graph Theory Lecture 9: Trees

Faculty Incharge: Adil Mudasir Department of CSE,NIT Srinagar

Trees in graph theory

A	tree is	a.	Connectura	acyclic	anth	
	ind is	00	C CHINGING	010/0010	In pro-	
A	forest is	a	graph	in wh	ich each	Component
ß	a tree.					
Fx	0			0		
ur.	0			a	5)	
	Tree	with		Tree	with	
	one v	onego		two	vernices	
	0			-		
	ab			0-1	5-0-0	
	00			0	9-0	
	thee w	m		~	0	
	time	vomias		to	ero wim	
					vernian	
6	000	6			In the second	
	8006				Note: Red	nodes are lea
	0-0-0-0	G	-6		nodes	
	0	Ø	2			
			-		leaf of tree	is a vertex

Theorem :

Every Tree with n(>=2) vertices has atleast two leaves

A leaf da tree is a veryo d 1 degre one. Every tree with n (7,2) vornices has atleast leaves. two prosh suppose T has n (3,2) vorman. Les P: Vo-V, -V: (VK) be the longer path in T. Since P is longert, every neighbor of to lios on P. Since T is acyclic graph, v, is me only neighbor of vo. So d(vo) = 1. Similarly, 2(VK)=1. So, Tree T has atleast two nodes as leaves if n>=2(vertices). #Hence Proved 16/18

Theorem:

Every Tree with n vertices has exactly n-1 edges

Theorem Every tree with n verrius	, has exactly
n-1 edges.	
provin By induction	
et theorem is true for $n = 1$	😑 nzi, l=0
Suppose every tree with K vernias	ner workp
has K-1 edges, K7, 1.	Encircled nodes in red
Let T be a tree with 1K+1 vernice	are leaves
Since K+17,2, T have a leaf	x. Oz
me graph T-26, is a tree w	ят Т 0-0-0-0
K vernius; by induction hypothesis,	T-2
T-x has exactly (K-1) edges.	
Since T has one mine edge than	T-x,
the tree T has k edes.	П
# Hence Proved	

Theorem:

In a forest with v vertices and k components, the number of edges is v-k

menen	In a forces	r win	v	venias	and
Proof:	K Component the encir V-K · compone	cled section be nts	numb low repre	≪ ය ද esnts a forest	l <i>yss is</i> t with k
(TI T2	0 0-0	Ter	>	
no. of vetices in each	$v_1 = v_2$		VK		
comproment # edu	v_1 v_1 v_1	1	VK.	- 1	
compon	ent	К.			
#	t edges = 2	$\overline{v_i}(v_i-1)$			
tot	al no. edges	=1			
	-	K			
	-	202 - K	÷.		
		2 = 1			
	=	19 - K			
	# HENCE prove	ed that:			
	in a forest wit	n V vertices and	d K compo	onents ,no. o	f edges is V-K

Equivalent Statements about Trees

								T= (V	, 6)
Ð	Т	is	tree						
D	Τ	is	Conneund	gruph	and	has	exactly	[1]-1	edge
)	r	is	acyclic	and	has	e	xactly	M- 1 .	edeps
)	Awy	t t	vo ven	ian os	T	one	joined	ny a	
	an	ique	path.						